Matemáticas en Secundaria con Software Libre

Daniel López Avellaneda

dani@lubrin.org

Gráficas de Funciones

Manual para el curso organizado por:

CEP Indalo

http://aula.cepindalo.es

Marzo - Mayo 2009

Índice general

1.	Apli	icacion	es para dibujar gráficas	3
2.	Km	Plot		4
	2.1.	Descri	pción	4
	2.2.	Instala		$\overline{5}$
	2.3.	Manua	l de uso	6
		2.3.1.	Introduciendo funciones	7
			2.3.1.1. Desde el cuadro de edición	.7
			2.3.1.2 Nuevo gráfico de función	8
			2.3.1.3. Funciones con parámetro	9
			2.3.1.4. Funciones en coordenadas paramétricas	11
			2.3.1.5. Funciones en coordenadas polares	12^{-1}
		2.3.2.	Acciones con funciones	13
			2.3.2.1. Editar funciones	13
			2.3.2.2. Combinar funciones	14
			2 3 2 3 Recorrer funciones	14
			2.3.2.4. Calcular valores	15
		2.3.3.	Exportar gráficas como imagen	16
		2.3.4.	Referencia de Menús	17
			2.3.4.1. Menú Archivo	17
			2.3.4.2. Menú Editar	17
			2.3.4.3. Menú Dibujar	17
			2.3.4.4. Menú Ampliación	17
			2.3.4.5. Menú Herramientas	18
			2.3.4.6. Menú Preferencias	18
			2.3.4.7. Menú Avuda	18
	2.4.	Config	uración	19
		2.4.1.	Configuración general	19
		2.4.2.	Configuración de colores	19
		2.4.3.	Configuración de los ejes de coordenadas	$\overline{20}$
		2.4.4.	Configuración de la escala	20^{-1}
		2.4.5.	Configuración de las fuentes	21
	ъ		''	
3.	Rec	ursos o	online	22
	3.1.	Introd	uccion	22
	3.2.	Granca	as onnne	22
		3.2.1.		22
		3.2.2.		23
		3.2.3.		24
		3.2.4.	Ejempio 4: Funciones a trozos	25
	3.3.	Otros	Kecursos	27

3.3.0.1.	Funciones con JClic	. 27
3.3.0.2.	Presentación sobre funciones	. 28

Capítulo 1 Aplicaciones para dibujar gráficas

Existen muchos programas (dentro del software libre) para dibujar gráficas.

Entre todos los programas, podemos destacar algunos: El propio GeoGebra (tratado en este curso), WxMaxima (que también será tratado en este curso) y el programa **KmPlot** (tratado en profundidad en el presente manual).

KmPlot, que se aborda en el siguiente capítulo, es un programa para LiNuX y todo lo referente a la instalación del mismo vale para cualquier distribución de LiNuX. No obstante existe un proyecto para usar KmPlot en Windows: http://windows.kde.org/

Es conveniente que instale y use KmPlot, aunque para realizar las tareas del curso puede usar cualquier programa de gráficos (incluso aunque no haya sido tratado durante el curso).

Capítulo 2

KmPlot

2.1 Descripción

KmPlot: Aplicación de representación gráfica de funciones matemáticas.

Web: http://edu.kde.org/kmplot/

KmPlot es software libre con Licencia Pública General GNU versión 2.

Con KmPlot podemos dibujar gráficas de funciones matemáticas con las siguientes características:

- Puede trazar diferentes funciones de forma simultánea y combinar sus elementos para construir nuevas funciones.
- Admite funciones con parámetros y funciones con coordenadas polares.
- Tiene varios modos de cuadrícula disponibles.
- Los trazados se pueden imprimir de forma muy precisa y correctamente escalados
- Se pueden grabar las gráficas en varios formatos: PNG, SVG y BMP.
- Guarda los archivos en formato xml.

Además es posible:

- Rellenar y calcular el área entre el gráfico y el primer eje.
- Encontrar los valores máximo y mínimo de una función en un intervalo.
- Cambiar parámetros de la función dinámicamente.
- Dibujar la derivada y la integral de una función dada.
- Manejar el programa desde consola o mediante script.

2.2 Instalación

Centros TIC: ya se encuentra instalado

NO TIC: para instalarlo en un Centro no TIC, en casa, etc, seguiremos estas instrucciones:

\$ sudo apt-get install kmplot	&	
--------------------------------	---	--

Alternativamente se puede instalar a golpe de clic de ratón:

Menús Aplicaciones > Añadir programas

Elegimos la categoría Educación (*Edutainment*) y pulsamos sobre el triangulito $\triangleright Mas programas...$ para que se despliegue la lista completa.

Buscamos KmPlot y lo marcamos. Pulsamos Aplicar.

Pienso que es más fácil y rápido instalar tecleando en terminal (apt-get install programa) cuando se conoce el nombre del programa.

La opción Añadir programas (de forma gráfica) resulta útil cuando no conocemos el nombre del programa, pues nos presenta una lista de los programas más usados junto con una descripción de cada uno.

2.3 Manual de uso

Iniciaremos el programa KmPlot mediante el Menú: Aplicaciones⊳Educación Centros TIC⊳Matemáticas⊳KmPlot

Opcionalmente podemos iniciar KmPlot desde terminal:

	\$	kmplot	<u>&</u> :	
_	φ	KIIIPIOU	œ	

De cualquier forma obtendremos una ventana similar a la siguiente imagen:

4	KmPlot	
<u>A</u> rchivo <u>E</u> ditar <u>D</u> ibujar	A <u>m</u> pliación <u>H</u> erramientas <u>P</u> referencia	s A <u>y</u> uda
🕴 🍓 😭 🔚 🛛 cuadro d	le edición 🎢 🕂 🔶 📩 barra de	iconos
	×^	
	+5	
zona de	gráficas	
	+1+	
-5	-1 +1 +5 ×	
	5	
	barra de estado	

En principio vemos una ventana normal como la mayoría de programas, con su barra de título, barra de menús, barra de iconos (barra de herramientas), zona central o de gráficas y barra de estado.

Quizás llama la atención que al pasar el cursor por la zona de gráficas es acompañado por dos rectas perpendiculares que indican las coordenadas del punto por el que vamos pasando (podemos ver las coordenadas abajo, en la barra de estado).

Dibujando una función simple: antes de ver las diferentes opciones y posibilidades que ofrece kmplot, veamos rápidamente cómo dibuja una gráfica. Teclee en el *cuadro de edición*:

x^2-5x+6

y pulse <ENTER>. Verá la gráfica de la función $f(x) = x^2 - 5x + 6$

2.3.1 Introduciendo funciones

2.3.1.1 Desde el cuadro de edición

La manera más rápida de introducir una función es mediante el cuadro de edición.

La sintaxis a usar es la siguiente:

	Sintax is	E jemplo	Función
signos de operación	+, -, *, /	3*x+3	f(x) = 3x + 3
exponentes	^	x^3+2x^2	$f(x) = x^3 + 2x^2$
raíz cuadrada	\mathbf{sqrt}	$\operatorname{sqrt}(2\mathrm{x}{+}1)$	$f(x) = \sqrt{2x+1}$
función exponencial	exp	$\exp(2x)$	$f(x) = e^{2x}$
funciones logarítmicas	\log, \ln	$\log(x{+}5)$	$f(x) = \lg(x+5)$
funciones trigonométricas	sin, cos, tan	$\sin(x)$	$f(x) = \sin(x)$
inversas	arcsin, arccos, arctan		
hiperbólicas	sinh, cosh, tanh		
hiperbólicas inversas	arcsinh, arccosh, arctanh		
constantes	pi, e	2x+pi	$f(x) = 2x + \pi$

– Nótese que la expresión ' $\mathbf{3}^*\mathbf{x}$ ' se puede poner también como ' $\mathbf{3}\mathbf{x}$ ' (kmplot lo entenderá como producto)

• Además de las constantes predefinidas, podemos definir nuevas constantes

• El argumento de las funciones trigonométricas es en **radianes**.

2.3.1.2 Nuevo gráfico de función

Otra forma de introducir una función, en la que podemos especificar varias opciones (color, grosor de línea, etc.) es mediante el icono *Nuevo gráfico de función*'.

Alternativamente se puede acceder desde el Menú: **Dibujar⊳Nuevo gráfico de función**.

🛷 <u>N</u> uevo gráfico de función
👭 Nuevo gráfico paramétrico
🚸 Nuevo gráfico <u>p</u> olar
😽 <u>E</u> ditar gráficos

De ambas formas accederemos a la siguiente pantalla, que completamos con un ejemplo:

🖶 Editar gráfico de función - KmPlot 🛛 🗙						
	Función	_				
Función	_ Definición					
f'	Ecuación:	Ecuación:				
Derivadas	f(x)=x^2+x-5					
$\int f$	Extensiones					
Integral	Ocultar					
	Valores de los parámetros					
	Desactivar valores de los parámetros					
	O ⊻alores de una lista Editar lista					
	O U sar Barra deslizadora no. 1 ▼					
	■ Rango personalizado del gráfico:					
	<u>M</u> in: -3					
	Ма <u>х</u> ; З					
	Ancho de línea: 20 🖨 0,1mm					
	Color:					
Ayuda	Acep <u>t</u> ar <u>C</u> ancelar					

Como resultado obtenemos la gráfica:

Otras opciones que no hemos usado son:

- Ocultar: guarda la función pero no la dibuja
- Valores de los parámetros: es posible introducir funciones con un parámetro. Los diferentes valores del parámetro los podemos incluir mediante 'Valores de una lista' o usando una barra deslizadora (para poderlos cambiar dinámicamente). Mas información en el apartado 2.3.1.3 de la página 9
- Derivadas: permite dibujar la primera y segunda derivada de la función.
- Integral: dibuja la función integral de la función dada

Se han completado los campos:

- Ecuación: x²+x-5
- Rango personalizado del gráfico: entre -3 y 3. Es el dominio de la función. Si no se indica, kmplot lo entenderá como todo R.
- Ancho de línea: $20 \ge 0.1 \text{ mm} = 2 \text{ mm}$
- **Color**: haciendo clic se puede elegir cualquier color

2.3.1.3 Funciones con parámetro

Se puede introducir un parámetro en la definición de una función. Por ejemplo la función $f(x) = x^2 + ax + 3$ contiene el parámetro 'a'. El objetivo es que podamos 'variar' dicho parámetro, es decir, darle distintos valores, para ver como cambia la gráfica según esos valores.

KmPlot permite un sólo parámetro. Para introducir una función con parámetro lo haremos mediante 'Nuevo gráfico de función' y teniendo en cuenta que:

- Expresaremos la función de la forma f(x, a) = expres. Por ejemplo: f(x, a) = 2x + a
- Decidiremos entre una de las siguientes formas de 'variar' el parámetro:
 - Una lista de valores predefinidos
 - Una barra deslizadora para variarlo dinámicamente

Veamos un ejemplo:

Observe que la función es f(x) = a * x, en lugar de f(x) = ax (como aparece en la imagen), pues en este caso, al no tratarse de un número, KmPlot necesita que le indiquemos el producto con '*'.

Ecuación: f(x, a) = a * x

Valores de los parámetros: Valores de una lista

Pulsando sobre **Editar lista**, podemos introducir los valores del parámetro. Nos dibujará una gráfica por cada valor del parámetro.

Pulsamos sobre Nuevo..., para ir añadiendo parámetros.

Si introducimos, por ejemplo los valores -3, 1 y 5, nos dibujará una gráfica por cada valor.

En la ventana editor de parámetros, hay dos botones: Exportar e importar que se usan para:

- Exportar: La lista de valores introducidos la guarda en un fichero de texto plano.
- Importar: Podemos insertar una lista de valores que tengamos almacenada en un fichero de texto plano¹. Debemos incluir un valor por línea.

Otra opción para 'variar' los parámetros es usar las **barras de deslizamiento**. Entonces nos aparecerá una barra de deslizamiento con la que variaremos el parámetro dinámicamente. No tendremos ya varias gráficas, sino una sola gráfica que se irá moviendo conforme actuamos sobre la barra deslizadora.

- Las barras deslizadoras toman valores de 0-100, por lo que no podemos dar valores negativos al parámetro.
- Una barra deslizadora está asociada a una función. Existen cuatro barras, lo que nos permite usar varias barras simultáneamente (una para cada función).

 $^{^{1}}$ Los ficheros de texto plano se generan con un editor de textos (gedit por ejemplo), mientras que los ficheros de texto con formato (negritas, cursivas, etc.) se generan con un procesador de textos (Open Office por ejemplo)

2.3.1.4 Funciones en coordenadas paramétricas

Hasta ahora hemos introducido funciones de forma explícita usando expresiones como f(x) = 2x-1, o sencillamente 2x-1. También es posible introducir funciones con coordenadas paramétricas. Para ello usaremos el Menú: **Dibujar** \triangleright **Nuevo gráfico paramétrico.**

🖶 Nuevo gráfico paramétrico 🗙	🚰 KmPlot	
Definición	<u>A</u> rchivo <u>E</u> ditar <u>D</u> ibujar A <u>m</u> pliación <u>H</u> erramientas <u>P</u> referencias A <u>v</u> uda	
$\times \operatorname{circulo}(t) = 4 \operatorname{*} \cos(t) \operatorname{-} 1$]]]]]]]]]]]]]]]]]]]	⊢L
$y \operatorname{circulo}(t) = 4 \operatorname{sin}(t) + 2$	УМ	
- Extensiones	+5	
Qcultar		
🗌 Rango t <u>p</u> ersonalizado del gráfico:	+1	
m <u>í</u> n:		×
<u>m</u> áx:		
Ancho de línea: 20 🛋 0.1mm		
Azuda Acep <u>r</u> ar <u>C</u> ancelar		

nombre: ponemos un nombre para la función (si lo dejamos en blanco se asignará un nombre por defecto)

xfunc(t): una expresión usando el parámetro t para la primera coordenada

yfunc(t): una expresión usando el parámetro t para la segunda coordenada

Funciones en coordenadas polares 2.3.1.5

4

Usaremos el Menú: Dibujar $\triangleright\, Nuevo$ gráfico polar..

- ₩ <u>N</u>uevo gráfico de función...
- 👯 Nuevo gráfico paramétrico... 👏 Nuevo gráfico <u>p</u>olar...
- 😽 <u>E</u>ditar gráficos...

4	Nuevo	gráfico p	oolar	
_ Defini	ción ———			
Ecua	ción:			
r= (t)=0.8*t			
Evten	siones			
	ultar			
	uitai			
🗙 Ra	ngo r <u>p</u> ersor	nalizado de	l gráfico:	
M <u>i</u> n:	0			
<u>M</u> ax:	20			
<u>A</u> nch	o de línea: [10 🖨 0,1	mm
Color	:			
Ayud	la	Acep <u>t</u> ai	· <u>C</u> an	icelar

En la ecuación 't' representa el ángulo.

La expresión $(t)=2*\sin(t)+3$ significa:

 $r(\theta) = 2sin(\theta) + 3$

En el ejemplo dibujamos una Espiral de Arquímedes.

2.3.2 Acciones con funciones

En este apartado reflejaremos todas las acciones que podemos realizar con funciones ya introducidas en KmPlot.

2.3.2.1 Editar funciones

Editando una función podemos modificar todas las características introducidas: ecuación, color y tamaño de la gráfica, dominio, etc. Con rigor matemático, el título debería ser '*Editar gráficos*', puesto que podemos introducir gráficos que no sean funciones. Para editar un gráfico usaremos el menú:

En la siguiente pantalla debemos seleccionar el gráfico, antes de pulsar Editar.

🚽 Editar	gráficos 🗙
f(x)=x^2 g(x)=x h(x)=x^2-x^3+1 xcirc(t)=2*cos(t);ycirc(t)=2*si	Nuevo gráfico de <u>f</u> unción Nuevo gráfico <u>p</u> aramétrico <u>N</u> uevo gráfico polar <u>E</u> ditar <u>E</u> liminar
Ayuda	C <u>o</u> piar función <u>M</u> over función Acep <u>t</u> ar <u>C</u> ancelar

Para usar las opciones **Copiar función...** y **Mover función...** deberemos tener más de una instancia de KmPlot, es decir, disponer de varios KmPlot abiertos para poder copiar y mover funciones de uno a otro.

2.3.2.2 Combinar functiones

Es posible crear una nueva función basándonos en funciones ya introducidas. Por ejemplo: h(x) = f(x) + 2g(x)

Hemos creado la nueva función h(x) usando las que ya teníamos: f(x) y g(x).

La única restricción para combinar funciones es que tienen que estar expresadas de la misma forma. No podemos combinar una función en paramétricas con otra en polares.

2.3.2.3 Recorrer functiones

Cuando pasamos el cursor sobre una gráfica, se convierte en (**cursor de cruz**) dos rectas perpendiculares que se cruzan en la posición del cursor. Eso nos facilita ver sobre los ejes una aproximación de las coordenadas del punto sobre el que estamos. Para ver las coordenadas exactas podemos mirar abajo, en la barra de estado.

Si hacemos clic sobre una de las gráficas (no hace falta pulsar exactamente sobre la curva, pulsando sobre las cercanías, ya vale) el cursor de cruz toma el color de la gráfica y al desplazarnos va recorriendo la función. En la barra de estado aparece, además de las coordenadas del punto, la ecuación de la función (abajo derecha).

Para dejar de recorrer la función basta con hacer clic. También es posible cambiar de función mediante las teclas $[\rightarrow] y [\leftarrow]$ (o recorrer la función con $[\downarrow] y [\uparrow]$.

No se pueden recorrer funciones en coordenadas paramétricas o polares.

2.3.2.4 Calcular valores

KmPlot permite calcular algunos valores de una función mediante el menú Herramientas:

Obtener valor y ... Nos permite calcular la imagen (valor y) de cualquier valor x.

Debemos elegir la función (en caso de tener más de una).

No lo calcula en gráficas en coordenadas paramétricas o polares.

Buscar el valor mínimo y el valor máximo Estos valores no son absolutos, sino relativos a la parte de la gráfica que tenemos en pantalla. Si queremos que los calcule en un intervalo más amplio, necesitaríamos usar el zoom previamente. Es decir, si en la gráfica el ejeX está entre -10 y 10, KmPlot puede calcular el máximo o mínimo de cualquier intervalo incluido en [-10, 10].

Área bajo el trazo Calcula y dibuja el área comprendida entre la función y el ejeX. Tampoco es área total, sino relativa a la parte visible de la gráfica o al intervalo que le introduzcamos.

X:28.2Y:795.24Trazo $f(x)=x^2$ g(x)=x $h(x)=x^2-x^3+1$ CalcularCalcular

Obtener valor y

×

2.3.3 Exportar gráficas como imagen

Una de las opciones más interesantes (no incluida en versiones anteriores de KmPlot) es la posibilidad de guardar nuestras gráficas en varios formatos: BMP, SVG y PNG.

A nivel matemático el que más nos interesa es PNG. Una vez guardada la gráfica como fichero.png, podemos insertarla en un documento, en una página web, enviarla por correo, redimensionarla con un programa gráfico, etc.

Debemos saber, antes de nada, que también existe la posibilidad de capturar la ventana de KmPlot, pero la calidad es mucho menor. KmPlot exporta la imagen.png con mucha resolución y gran tamaño, por lo que a veces se hace necesario redimensionar la imagen.png (hacerla más pequeña) antes de insertarla en nuestros documentos o webs.

Vimos cómo hacerlo en el tema de introducción (tema 0).

Para guardar las gráficas de la pantalla de KmPlot usaremos el Menú: Archivo > Exportar..

<u>D</u> irección:	nombre	-	<u>G</u> uardar			
<u>F</u> iltro:	Bitmap 180ppp (*.png)	•	<u>C</u> ancelar			
🕱 Seleccionar automáticamente el nombre de la e <u>x</u> tensión del archivo (.png)						

Una vez seleccionada la carpeta adecuada (para guardar la imagen), seleccionamos el filtro: PNG, BMP o SVG. Por último elegimos un nombre para la imagen.

Si tenemos marcada la casilla: 'Seleccionar automáticamente el nombre de la extensión del archivo' no necesitamos poner la extensión (en caso contrario si debemos ponerla)

2.3.4.1

Menú Archivo

Nuevo <u>N</u> uevo	Ctrl+N
🕋 <u>A</u> brir	Ctrl+O
📔 Abrir <u>r</u> eciente	•
📔 <u>G</u> uardar	Ctrl+S
🛃 Guardar <u>c</u> omo	
📥 <u>I</u> mprimir	Ctrl+P
E <u>x</u> portar	
🚺 Salir	Ctrl+Q

2.3.4.2 Menú Editar

- Golores...
 Eistema de coordenadas...
 Eistema de coordenadas...
- <u>Sistema de coordenadas...</u>
- ш/ <u>с</u>эсаа...
- Τ<u>Υ</u> <u>F</u>uentes...
- ∔ Sistema <u>d</u>e coordenadas I
- ⊣ Sistema de coordenadas <u>I</u>I
- 📋 Sis<u>t</u>ema de coordenadas III

Las clásicas opciones, de las que merece destacar:

- Guardar o guardar como. Los ficheros son guardados con extensión *.fkt que no es una extensión propietaria de KmPlot, sino que en realidad los guarda en formato *.xml (lo único que hace es cambiar xml por fkt).
- Exportar. Visto en el apartado 2.3.3
- Colores: apartado 2.4.2
- Sistema de coordenadas: apartado 2.4.3
- Escala: apartado 2.4.4
- Fuentes: apartado 2.4.5

Las tres últimas opciones seleccionan un sistema de coordenadas entre los 3 disponibles.

2.3.4.3 Menú Dibujar

- ₩ <u>N</u>uevo gráfico de función...
- 🟨 Nuevo gráfico paramétrico...
- 🚸 Nuevo gráfico <u>p</u>olar...
- 😽 <u>E</u>ditar gráficos...
- Nuevo gráfico de función: apartado 2.3.1.2

2.3.4.4 Menú Ampliación

🗙 Sin aumento	Ctrl+0
🔍 Aumento <u>r</u> ectangular	Ctrl+1
🕵 Ac <u>e</u> rcar	Ctrl+2
🔍 A <u>l</u> ejar	Ctrl+3
<u>C</u> entrar punto	Ctrl+4
Ajustar a las funciones trigonométricas	

• Sin aumento: pasa el cursor al normal

- Nuevo gráfico paramétrico: apartado 2.3.1.4
- Nuevo gráfico polar: apartado 2.3.1.5
- Editar gráficos: apartado 2.3.2.1

- Aumento rectangular: aumenta sólo la zona que encerremos en un rectángulo
- Acercar y Alejar: aumenta o disminuye según el porcentaje fijado en 2.4.1
- Centrar punto: centra la gráfica en el punto en el que hagamos clic
- Ajustar a las funciones trigonométricas: adapta la escala a las funciones trigonométricas (funciona para grados y para radianes)

Ver apartado 2.3.2.4

2.3.4.5 Menú Herramientas

Obtener valor y...

- ∀ <u>B</u>uscar el valor mínimo...

_ .

2.3.4.6 Menú Preferencias

	Ocultar barra <u>d</u> e herramientas Mostrar barra de <u>e</u> stado	
20	Modo de pantalla c <u>o</u> mpleta	Ctrl+Mayúsculas+F
	Mostrar <u>b</u> arras deslizadoras	•
2	Configurar accesos <u>r</u> ápidos	
2	Configurar barras de <u>h</u> erramientas	
4	<u>C</u> onfigurar KmPlot	

- Tenemos opciones de *ocultar o mostrar elementos*
- Opción de pantalla completa
- Configurar accesos rápidos (teclas especiales para las opciones de los menús)
- Barra de herramientas (añadir o quitar botones)
- Configuración de KmPlot: apartado 2.4.1

2.3.4.7 Menú Ayuda

🔌 <u>M</u> anual de KmPlot	Fl	
🐙 ¿Qué es <u>e</u> sto?	Mayúsculas+F1	
<u> <u> </u> </u>		
🗛 <u>A</u> cerca de KmPlot		
🐹 Acerca de <u>K</u> DE		

Si no tenemos instalado gran parte de entorno KDE (en Guadalinex usamos GNOME), el menú 'Manual de KmPlot' puede no funcionar. De todas formas no nos perdemos nada, ya que este manual es el mismo que hay en http://docs.kde.org/development/en/kdeedu/kmplot/

Configuración

2.4.1

Configuración general

4	Configurar - KmPlot 🛛 🗙	4	e e e e e e e e e e e e e e e e e e e	Co	nfigurar - KmPl	ot X
~	Preferencias generales		4	Constante	5	
General	Precisión		General	Variable	Valor	Nuevo
C-29/992 G-4 - 2 K	Puntos por pixel: 1,00 👻		C-219 912 G-41 1 K			Cambiar <u>v</u> alor
Constantes	🕱 Utilizar precisión relativa		Constantes			Eliminar
	Modo ángulo					Duplicar
	Badián					
	O <u>G</u> rado					
	Color de fondo					
	Ampliar					
	Aumentar en : 20% 🚔					
	Disminuir en: 25% 🖨					
A <u>y</u> uda P	redeterminado Acep <u>t</u> ar Aplicar <u>C</u> ancelar		A <u>y</u> uda P	re <u>d</u> eterminad	Acep <u>t</u> ar	Aplicar <u>C</u> ancelar

Mediante la configuración general (Menú **Preferencias** \triangleright **Configurar KmPlot..**) podemos definir algunas opciones como precisión, medida de ángulos, color de fondo y porcentaje que aumenta o disminuye al hacer zoom.

La pestaña constantes nos permite definir nuestras propias constantes que se sumarán a las que ya posee el sistema: e y π

2.4.2 Configuración de colores

Mediante el Menú **Editar** \triangleright **Colores..** podemos cambiar los colores de los ejes y de la cuadrícula, así como los colores que KmPlot asigna por defecto a las funciones

4	Conf	igurar - KmPlot	X
•	Editar colores		
Colores	C <u>o</u> ordenadas	Color de <u>f</u> unción por defecto	_
	<u>Ej</u> es:		
	C <u>u</u> adrícula:		
Ayuda	Pre <u>d</u> eterminado	Acep <u>t</u> ar <u>Aplicar</u> <u>C</u> ancelar	r

2.4.3 Configuración de los ejes de coordenadas

Mediante el Menú Editar > Sistema de coordenadas.. podemos elegir un rango para los ejes entre los propuestos o crear uno personalizado. En este último caso, además de números, valdrían las constantes predefinidas (incluido las definidas por nosotros), e incluso expresiones del tipo f(a) donde f es una función introducida y a un número.

Además, podemos configurar la rejilla o cuadrícula a una de las cuatro opciones propuestas.

🚭 Configurar - KmPlot 🗙				
Editar sistema de coordenadas				
Coordenadas	Ejes Cuadrícula			
	_ Eje X	– Eje <u>Y</u> : ––––––		
	○ [- <u>8</u> +8]	0 [-8 +8]		
	0 [-5 +5]	○ [-5 +5]		
	○ [0 +16]	○ [0 +1 <u>6</u>]		
	0 [0 +10]	O [0 +10]		
	ersonalizado:	Pe <u>r</u> sonalizado:		
	Min: 3.0777	Min: -3.1406		
	Max: 3.3223	Max: 3.2594		
	Agcho de línea para los ejes: 5 💭 0,1 mm			
	Anc <u>h</u> o de la marca:	1 🔹 0.1 mm		
	Longitud de la marca: 10 🚔 0,1 mm			
	🕱 Mostrar etiquetas	🕱 Mostrar ejes		
	X Mostrar marco extra	⊠ Mostrar flechas		
Ayuda Predeterminado Aceptar Aplicar Cancelar				

2.4.4

Configuración de la escala

de la	Configurar - Kr	nPlot	X
Escala	Editar escala Eje x: Escalado: 1 marca = automático • Impresión: 1 marca = 1 • cm	Eje y Escalado: 1 marca = automático • Impresión: 1 marca = 1 • cm	
Ayuda	Predeterminado	Aceptar Aplicar Cancelar	•

Mediante el Menú **Editar** > **Escala.** podemos configurar la distancia entre las líneas de la cuadrícula, tamaño de la gráfica (podemos por ejemplo hacer que se vea el doble de ancha que de larga).

2.4.5 Config

Configuración de las fuentes

1	Configurar - Kr	nPlot
	Editar escala	
Escala	Eje x:	Eje y
	Escalado:	Escalado:
	<u>1</u> marca = automático 💌	1 ma <u>r</u> ca = automático 💌
	Impresión:	Impresión:
	1 <u>m</u> arca = 1 • cm	1 marca = 1 🔹 cm
Ayuda	Predeterminado	Aceptar Aplicar Cancelar

Mediante el Menú ${\bf Editar} \triangleright {\bf Fuentes..}$ podemos elegir la tipografía (tipo de letra y tamaño) para los ejes.

Capítulo 3

Recursos online

3.1

3.2.1

Introducción

En la red también hay web que dibujan gráficas. Constituyen un recurso que podemos usar desde cualquier PC (independientemente del Sistema Operativo y programas que tenga instalados), siempre que tengamos conexión a Internet.

De entre las muchas páginas, veamos algunos ejemplos:

Ejemplo 1

Web: http://www.emac.itcr.ac.cr:8080/webMathematica/NewScript/graficar.jsp

3.2.2 Ejemplo 2

Web: http://fooplot.com

La web permite representar varias funciones simultáneamente (incluso en coordenadas polares y curvas paramétricas). Además podemos guardar las gráficas generadas en PNG y otros formatos

3.2.3 Ejemplo 3

Web: http://www.luventicus.org/articulos/03U004/index.html

Esta web nos muestra un artículo sobre gráficos de funciones reales de una variable real. A mitad de la página aproximadamente encontramos el applet Java para dibujar funciones que puede observar en la siguiente imagen:

También tiene algunas opciones de configuración como los intervalos de definición de la función (en ambos ejes) y desplazamiento a través de la función.

3.2.4 Ejemplo 4: Funciones a trozos

Aprovechando el programa C.A.R. (geometría dinámica), programé unas modificaciones para dar interactividad y conseguí crear mi propio graficador. Se accede a la web mediante la url:

http://www.infonegocio.com/lubrin/zirkel/trozos/trozos.html

Observemos la imagen que nos ofrece el navegador:

En la parte superior disponemos de un menú con Ayuda, Ejemplos, Capturas de pantalla, etc. En la Ayuda está prácticamente todo detallado.

A continuación viene la zona superior donde disponemos de tres entradas para introducir funciones (expresión de la función y dominio de definición de la misma). Si sólo queremos dibujar una función, sólo completaremos una de las entradas. Mire la ayuda y los ejemplos para más información.

En la parte inferior se encuentra, como ya habrá adivinado, la zona donde se dibujan las gráficas.

También dispone de la posibilidad de hacer zoom.

3.3 Otros Recursos

3.3.0.1 Funciones con JClic

JClic es un recurso muy usado en el aula, sobre todo en primaria. Es posible usar JClic también para estudiar las funciones y crear actividades interactivas para cualquier nivel. Aunque no está en el temario del curso, veamos un ejemplo:

El recurso se encuentra disponible en http://lubrin.org/funciones/act_func.html

3.3.0.2 Presentación sobre funciones

 ET_EX (no incluido en el temario del curso), no sólo se usa para generar textos científicos (o de cualquier tipo) como el que está leyendo, con ET_EX se pueden crear presentaciones en PDF que nada tienen que envidiar a las que se pueden generar con Impress de OpenOffice o PowerPoint de Microft.

Puede ver una muestra en: http://lubrin.org/mat/objetos/funciones_dani.pdf

