Funciones. Corte con los ejes de coordenadas 4082
– a)
Si Corte:
Si Corte:
– b)
Si Corte:
Si
Puntos de corte: y
– c)
Si Corte:
Si
Ecuación de grado 4º que podemos resolver por Ruffini, obteniéndose como soluciones:
Puntos de corte: ,
,
y
– d)
Si Corte:
Si Corte:
– e)
La función se puede simplificar quedando
Si . Corte
Si Si resolvemos la ecuación obtenemos como soluciones 2 y 3.
Por tanto los puntos de corte son y
– f)
Si Corte
Si Si resolvemos la ecuación obtenemos como soluciones 1 y -6. El 1 no se puede considerar como punto de corte porque no pertenece al dominio de la función.
Por tanto los puntos de corte son
Calcula los puntos de corte con los ejes de coordenadas de las siguientes funciones:
– a)
– b)
– c)
– d)
– e)
– f)
.