Publicar un mensaje

En respuesta a:

Ecuaciones Irracionales

Resuelve la ecuación:
\sqrt{8+2x} + 1 =  \sqrt{3x+13}

SOLUCIÓN

\sqrt{8+2x} + 1 =  \sqrt{3x+13}


Elevamos al cuadrado para eliminar una de las raaices

\left( \sqrt{8+2x} + 1 \right)^2= \left( \cancel{\sqrt}{\overline{3x+13}} \right)^{\cancel{2}}


En el primer miembro aplicamos las fórmulas de los productos notables

\left( \cancel{\sqrt}{\overline{8+2x}} \right)^{\cancel{2}} + 1^2 + 2 \cdot \sqrt{8+2x} \cdot 1= 3x+13


8+2x + 1 + 2 \cdot \sqrt{8+2x} = 3x+13


Ahora aislamos la raíz que queda y elevamos al cuadrado

2 \cdot \sqrt{8+2x} = 3x+13 - 8 - 2x - 1


2 \cdot \sqrt{8+2x} = x+4


Ahora elevamos al cuadrado ambos miembros para eliminar la raíz.
El 2 que multiplica a la raíz no ese necesario pasarlo al otro miembro

\left( 2 \cdot \sqrt{8+2x} \right)^{2}= (x+4)^2


 2^2 \cdot \left( \cancel{\sqrt}{\overline{8+2x}} \right)^{\cancel{2}}= (x+4)^2


 4 \cdot (8+2x)= x^2 + 4^2 -2 \cdot x \cdot 4


 32 + 8x= x^2 + 16 +8x


 -x^2 +16 = 0


 x^2 =16


 x= \pm \sqrt{16} = \pm 4

Recordemos que en las ecuaciones irracionales hay que comprobar las soluciones, pues al elevar al cuadrado se pueden introducir soluciones falsas.

Para comprobarlas, sustituimos las soluciones en la ecuación original

Si x=-4
\sqrt{8+2 \cdot(-4)} + 1 =  \sqrt{3 \cdot (-4)+13}
\sqrt{0} + 1 =  \sqrt{1} CIERTO

Si x=4
\sqrt{8+2 \cdot4} + 1 =  \sqrt{3 \cdot 4+13}
\sqrt{16} + 1 =  \sqrt{25} CIERTO

Las dos soluciones son CORRECTAS

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.