Publicar un mensaje

En respuesta a:

Integrales Inmediatas del tipo d(u) · u

Resuelve las integrales:

- \int (5x^2-3x)^4 \cdot (10x-3) \: dx
- \int x^3 \cdot (x^4-3^5) \: dx

SOLUCIÓN

Se trata de dos integrales inmediatas del tipo "potencia de una función". Para resolverlas, aplicamos la fórmula:

\int [u(x)]^n \cdot u’(x) \:dx = \frac{[u(x)]^{n+1}}{n+1} + C

- \int (5x^2-3x)^4 \cdot (10x-3) \: dx = \frac{(5x^2-3x)^5}{5}+C

- \int x^3 \cdot (x^4-3^5) \: dx = \frac{1}{4} \int 4 \cdot x^3 \cdot (x^4-3^5) \: dx = \frac{1}{4} \cdot \frac{(x^4-3^5)^2}{2} + C

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.