Publicar un mensaje

En respuesta a:

Razones trigonométricas de ángulos suplementarios

Dos ángulos son suplementarios si entre ambos suman 180º (por ejemplo 100 y 80).
Se suelen denotar así: \alpha y 180 - \alpha

En los ángulos suplementarios sus senos coinciden y sus cosenos también (aunque tienen distinto signo)

sen(\alpha) = sen (180 - \alpha)
cos(\alpha) = -cos (180 - \alpha)

Esto nos permite calcular las razones de cualquier ángulo del  II cuadrante, si conocemos las razones de su ángulo suplementario (en el I cuadrante).

Ejemplo: Sabiendo que sen(20)=0.34, calcula sen(160)

sen(160) = sen(180-20)=sen(20)=0.34

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.