Publicar un mensaje

En respuesta a:

¿Cuántas diagonales tiene un polígono?

Encuentra una fórmula para calcular el número de diagonales de un polígono de n lados.

SOLUCIÓN

La diagonal es un segmento que une dos vértices no consecutivos
Elementos de un polígono

Triángulo \longrightarrow no tiene diagonales
Cuadrado \longrightarrow 2 diagonales
Pentágono \longrightarrow 5 diagonales

Veamos una fórmula general.

- Un polígono de n lados tiene n vértices (n \geq 4)
- De cada vértice sale una diagonal hacia otro vértice, excepto hacia sí mismo y excepto hacia los dos vértices adyacentes

Por tanto de cada vértice salen n-3 diagonales
Como hay n vértices, en total serán n \cdot (n-3) diagonales.
Sin embargo, cada diagonal la estamos contando dos veces (contamos la diagonal AD y luego contamos la DA, que son la misma), por tanto debemos dividir por 2.

La fórmula quedaría asi:
El número de diagonales de un polígono de n lados es:

\fbox{\dfrac{n \cdot (n-3)}{2}}

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.