Publicar un mensaje

En respuesta a:

ecuaciones irracionales

Resuelve la ecuación x+3 = \sqrt{15+x}

SOLUCIÓN

Elevamos ambos miembros al cuadrado para eliminar la raíz

(x+3)^2 = \left( \sqrt{15+x} \right)^2


(x+3)^2 = \left( \cancel{\sqrt}{\overline{15+x}} \right)^\cancel{2}


x^2+3^2 + 2 \cdot 3 \cdot x = 15+x


x^2+9 + 6x = 15+x


x^2+9 + 6x - 15-x=0


x^2+5x -6=0


Resolvemos la ecuación de segundo grado


\begin{array}{ccc} & & x_1 = \frac{-5+7}{2}=1\\ & \nearrow &\\ x=\frac{-5\pm \sqrt{5^2-4 \cdot1\cdot(-6)}}{2 \cdot1}=
 \frac{-5\pm \sqrt{49}}{2}& &\\ & \searrow &\\& &x_2 = \frac{-5-7}{2}=-6\end{array}

Verificamos las soluciones:
Si x= 1 \longrightarrow 1+3 = \sqrt{15+1}
4 = \sqrt{16} VERDADERO

Si x=-6  \longrightarrow -6+3 = \sqrt{15-6}
-3 = \sqrt{9} FALSO

Por tanto la única solución es \fbox{x=1}

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.