Publicar un mensaje

En respuesta a:

Ángulo de dos rectas

Halla el ángulo que forman las rectas:
r \equiv 
\left\{
\begin{array}{ll}
x = 3-2t \\
y  = 7+t
\end{array}
\right.
s \equiv 
\left\{
\begin{array}{ll}
x = 1-4t \\
y  = 4+3t
\end{array}
\right.

SOLUCIÓN

El ángulo entre dos rectas es el determinado por sus vectores directores.
Los vectores directores son \vec{u_r}=(-2,1) y \vec{v_s}=(-4,3)
Si llamamos \alpha al ángulo que forman y usamos la definición de producto escalar:
\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot cos(\alpha) , podemos despejar el coseno:
cos(\alpha) = \frac{\vec{u} \cdot \vec{v}}{ |\vec{u}| \cdot |\vec{v}|}=
\frac{(-2)\cdot (-4)+1 \cdot 3}{\sqrt{(-2)^2+1^1} \cdot \sqrt{(-4)^2+3^2}}=
\frac{11}{\sqrt{5} \cdot 5}

Por tanto, \alpha = arc \: cos \left(\frac{11}{\sqrt{5} \cdot 5 \right)
\alpha \cong 10.3 grados

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.