Publicar un mensaje

En respuesta a:

Funciones gráfica

Represente gráficamente la siguiente función:

f(x) = \frac{3x-2}{x+1}

Indica dominio, monotonía y asíntotas

SOLUCIÓN

Dom(f) = R - \{-1\}

Asíntota vertical: \fbox{x=-1}
Asíntota horizontal: \fbox{y=3}

Monotonía. Se trataa de un hipérbola (son siempre crecientes o siempre decrecientes).
Hacemos el estudio de la monotonía mediante el signo de la derivada primera:
f’(x) = \frac{5}{(x+1)^2}
La ecuación f’(x) = \frac{5}{(x+1)^2} =0 no tiene ninguna solución.
Para construir los intervalos (de crecimiento y decrecimiento), además de las soluciones de la ecuación anterior, se usan los puntos de corte o discontinuidad (en nuestro caso x=-1), por tanto los intervalos serían:
(-\infty,-1) y (-1,+\infty)

Podemos observar que la derivada f’(x) = \frac{5}{(x+1)^2} es siempre positiva (el numerador es positivo y el denominador es un cuadrado, por tanto también positivo).
La función es creciente en ambos intervalos, al ser siempre la derivada positiva.

La gráfica de la función es la siguiente:

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.