Publicar un mensaje

En respuesta a:

Ecuaciones racionales

En las ecuaciones racionales la incógnita aparece en el denominador.

Para resolverlas hacemos mínimo común múltiplo (igual que en las ecuaciones con fracciones) para eliminar denominadores. Es importante comprobar las soluciones en este tipo de ecuaciones.

Veamos un ejemplo:

\frac{2(x+1)}{3(x-2)} + \frac{4}{x} = 4

m.c.m. de los denominadores: 3 \cdot (x-2) \cdot x

Ponemos el mcm como denominador en todas las fracciones
\frac{}{3(x-2)x} + \frac{}{3(x-2)x} = \frac{}{3(x-2)x}

Dividimos entre denominador y multiplicamos por numerador
\frac{x \cdot 2(x+1)}{3(x-2)x} + \frac{3(x-2)\cdot 4}{3(x-2)x} = \frac{3(x-2)x \cdot 4}{3(x-2)x}

Eliminamos denominadores
x \cdot 2(x+1)+ 3(x-2) 4 = 3(x-2)x\cdot 4}

Hacemos operaciones
2x (x+1)+ 12(x-2) = 12x(x-2)

Quitamos paréntesis
2x^2 + 2x+ 12x-24 = 12x^2-24x

Ordenamos
-10x^2 + 38x -24 = 0

Resolvemos la ecuación de segundo grado y las soluciones serían:
\frac{4}{5} y 3

Comprobamos las soluciones y ambas son correctas

Solución \fbox{x=3} y \fbox{x=4/5}

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.