Publicar un mensaje

En respuesta a:

06 - Producto vectorial

El producto vectorial de dos vectores \vec{u} y \vec{v} es otro vector que se representa \vec{u} \times \vec{v} y se define como:

\vec{u} \times \vec{v}= \left| \begin{array}{ccc} 
\vec{i} &\vec{j} &\vec{k} \\
u_1 & u_2 & u_3 \\
v_1 & v_2 & v_3 
\end{array} \right|

El vector producto vectorial \vec{u} \times \vec{v} es ortogonal a \vec{u} y ortogonal a \vec{v}.

La orientación viene definida por la regla del sacacorchos o regla del tornillo. Observe en la siguiente imagen las distintas orientaciones de \vec{u} \times \vec{v} y \vec{v} \times \vec{u}
Producto vectorial

Cálculo de áreas usando el producto vectorial

El módulo del vector producto vectorial representa gráficamente el área de un paralelogramo, y su mitad es el área del triángulo (ver siguiente imagen)

Cálculo de áreas usando el producto vectorial

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.