Publicar un mensaje

En respuesta a:

Recta perpendicular por punto de corte con el eje de ordenadas

Dada la recta 4x + 3y - 6 = 0, escribe la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas.

SOLUCIÓN

Calculamos el punto de corte de la recta 4x + 3y - 6 = 0 con el eje de ordenadas (eje OY)

x=0 \longrightarrow 4 \cdot 0 + 3y - 6 = 0 \longrightarrow 3y=6 \longrightarrow y=2

Por tanto, el punto es \textcolor{blue}{(0,2)}

La recta 4x + 3y - 6 = 0 tiene como vector director (-3,4).
Un vector perpendicular a (-3,4) es \textcolor{blue}{(4,3)}

Con punto y vector construimos la recta, por ejemplo en ecuación continua:

\frac{x}{4} = \frac{y-2}{3}

Aunque el ejercicio está ya resuelto y el enunciado no pide nada más, vamos a pasar la recta a ecuación continua y además dibujaremos ambas rectas para comprobar que los resultados son correctos

\frac{x}{4} = \frac{y-2}{3} \longrightarrow 3x=4(y-2) \longrightarrow 3x=4y-8 \longrightarrow 3x-4y+8=0

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.