Publicar un mensaje

En respuesta a:

Estadística Distribución Binomial

Un tirador hace blanco en 3 de cada cuatro disparos. Si realiza 9 disparos:

- a) Probabilidad de acertar al menos 8
- b) ¿Cuál es el número esperado de aciertos?

SOLUCIÓN

Se trata de un Binomial donde el experimento se repite 9 veces (n=9) y la probabilidad de éxito es 3/4 \left(p=\frac{3}{4}=0.75\right)

X \longrightarrow B(9,0.75)

Nos están pidiendo que acierte 8 o más veces, es decir P(X \geq 8)

P(X \geq 8) = P(X=8) + P(X=9)

LA fórmula que usamos en la binomial es la siguiente:

P(X=k) = \left( \begin{array}{c} n \\ k \end{array}  \right) \cdot p^k \cdot(1-p)^{n-k}

La aplicamos a nuestro caso particular

P(X=8) = \left( \begin{array}{c} 9 \\ 8 \end{array}  \right) \cdot 0.75^8 \cdot 0.25^1=9 \cdot 0,1001 \cdot 0.25 = 0.225

P(X=9) = \left( \begin{array}{c} 9 \\ 9 \end{array}  \right) \cdot 0.75^9 \cdot 0.25^0=1 \cdot 0,075 \cdot 1 = 0.075

P(X \geq 8) = P(X=8) + P(X=9) = 0.225+0.075 = \fbox{0.3}

b) ¿Cuál es el número esperado de aciertos?

El número esperado (media o esperanza matemática) de la Binomial es n \cdot p, que en nuestro caso será 9 \cdot 0.75=\textcolor{blue}{6.75}

Podemos decir que el número esperado de aciertos es 7

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.