Publicar un mensaje

En respuesta a:

Selectividad Andalucía 2001-2-B4

Considera la matriz
A = 
\left(
\begin{array}{ccc}
0 & 3 & 4\\
 1 & -4 & -5 \\
 -1 & 3  & 4
\end{array}
\right)

- (a) Siendo I la matriz identidad 3 x 3 y O la matriz nula 3 x 3 , prueba que A^3+I=O
- (b) Calcula A^{10}

SOLUCIÓN

- a) A^2 = \left(
\begin{array}{ccc}
0 & 3 & 4\\
 1 & -4 & -5 \\
 -1 & 3  & 4
\end{array}\right) \cdot 
\left(
\begin{array}{ccc}
0 & 3 & 4\\
 1 & -4 & -5 \\
 -1 & 3  & 4
\end{array} \right) = 
\left(
\begin{array}{ccc}
 -1 & 0 & 1\\
 1 & 4 & 4 \\
 -1 & -3  & -3
\end{array}
\right)

A^3 = A^2 \cdot A = \left(
\begin{array}{ccc}
 -1 & 0 & 0\\
 0 & -1 & 0 \\
 0 & 0  & -1
\end{array}
\right)

A^3 + I = \left(
\begin{array}{ccc}
 -1 & 0 & 0\\
 0 & -1 & 0 \\
 0 & 0  & -1
\end{array}
\right) + 
\left(
\begin{array}{ccc}
 1 & 0 & 0\\
 0 & 1 & 0 \\
 0 & 0  & 1
\end{array}
\right) =
\left(
\begin{array}{ccc}
 0 & 0 & 0\\
 0 & 0 & 0 \\
 0 & 0  & 0
\end{array}
\right)

- b) A^{10} =A^3 \cdot A^3 \cdot A^3 \cdot A =
(-I) \cdot (-I) \cdot (-I) \cdot A = -A = \left(
\begin{array}{ccc}
0 & -3 & -4\\
 -1 & 4 & 5 \\
 1 & -3  & -4
\end{array}
\right)

moderación a priori

Aviso, su mensaje sólo se mostrará tras haber sido revisado y aprobado.

¿Quién es usted?

Para mostrar su avatar con su mensaje, guárdelo en gravatar.com (gratuit et indolore) y no olvide indicar su dirección de correo electrónico aquí.

Añada aquí su comentario

Este formulario acepta los atajos de SPIP, [->url] {{negrita}} {cursiva} <quote> <code> y el código HTML. Para crear párrafos, deje simplemente una línea vacía entre ellos.