Contraste de Hipótesis para la media (bilateral)

Contraste bilateral

H_o: \mu = k (hipótesis nula: la media es k)
H_1: \mu \neq k (hipótesis alternativa: la media es distinta de k)

Región de aceptación (R)

R = \left( k-Z_c \cdot \frac{\sigma}{\sqrt{n}},  k+Z_c \cdot \frac{\sigma}{\sqrt{n}}\right)

Toma de decisión

- Si \overline{x} \in R \Longrightarrow aceptamos H_o
- Si \overline{x} \notin R \Longrightarrow rechazamos H_o

Datos necesarios

- n: tamaño de la muestra
- \sigma: desviación típica
- \overline{x}: media de la muestra
- z_c: valor crítico

Cálculo del valor crítico z_c

- Confianza: 90%, 95%, 98%, etc.
- Nivel de confianza: 0.90, 0.95, 0.98, etc.
- Significación+Confianza = 100%

P(Z \leq z_c) = \frac{1+nivel \:confianza}{2}

Ejemplo: Confianza del 95%

P(Z \leq z_c) = \frac{1+0.95}{2}
P(Z \leq z_c) =0.975
Miramos la tabla de la N(0,1) y obtenemos \fbox{z_c=1.96}