• Inicio
  • Apuntes
  • Vídeos
  • Ejercicios
  • Ej. Resueltos
  • PAU
  • Acceso 25
  • Buscar
  • Inicio >
  • EJERCICIOS de Matemáticas >
  • 1º BACH. CIENCIAS >
  • Funciones (I) >
  • Calcular el dominio de una función

Calcular el dominio de una función

|
  • funciones
  • dominio

Calcula el dominio de la función y = \frac{x}{x^2-x-6}

SOLUCIÓN

Al tratarse de una función racional, su dominio son todos los reales excepto los que anulan el denominador.

Igualamos el denominador a cero y resolvemos

x^2-x-6=0


\begin{array}{ccc} & & x_1 = \frac{1+5}{2}=3\\ & \nearrow &\\ x=\frac{-(-1)\pm \sqrt{(-1)^2-4 \cdot1\cdot(-6)}}{2 \cdot1}=
 \frac{1\pm \sqrt{25}}{2}& &\\ & \searrow &\\& &x_2 = \frac{1-5}{2}=-2\end{array}

Dom(f)=\textcolor{blue}{R-\{-2,3\}}

comentariosComentar el Ejercicio

pregunta Pregunta tus dudas de Matemáticas, Física o Química

  • Secciones
  • 1º BACH. CIENCIAS
    • Cónicas
    • Derivadas
    • Ecuaciones
    • Ecuaciones Exponenciales y Logarítmicas
    • Exámenes
    • Funciones (I)
    • Funciones II
    • Geometría en el Plano
    • Inecuaciones
    • Integrales
    • Logaritmos
    • Números Complejos
    • Números Reales
    • Polinomios y Fracciones Algebraicas
    • Probabilidad
    • Sistemas de Ecuaciones
    • Sucesiones
    • Trigonometría
  • 1º BACH. SOC.
  • 1º ESO
  • 2º BACH. CIENCIAS
  • 2º BACH. SOC.
  • 2º ESO
  • 3º ESO
  • 4º ESO

Palabras clave

  • dominio
  • funciones

2006 - 2023  ► Matemáticas IES
©Daniel López Avellaneda, licenciado en Ciencias Matemáticas (Contactar)
 
Mapa del sitio | Seguir la vida del sitio RSS 2.0 | Privacidad | Cookies

Síguenos en  [Youtube]   [Twitter: @matematicasies]   [Pinterest]