-
Calcula las dimensiones de tres campos cuadrados que no tienen ningún lado en común y que satisfacen que el perímetro de uno de ellos es el triple que el de otro y, además, se necesitan 1248 metros de valla para vallar completamente los tres campos, de manera que la suma de las áreas es la mínima posible.
-
Descomponer el número 12 en dos sumandos positivos de forma que el producto del primero por el cuadrado del segundo sea máximo.
-
Queremos construir una caja de cartón (sin tapadera) de base cuadrada. Disponemos de un cartón de 1 metro cuadrado y queremos saber las dimensiones de la caja para que su volumen sea el máximo posible.
a) Realiza un esquema de la caja asignando incógnitas a los datos desconocidos
b) Encuentra la expresión que represente la superficie (4 lados + fondo) y la igualas a 1 (puesto que disponemos de 1 metro cuadrado de cartón)
c) Encuentra la función que exprese el volumen de la caja y exprésala con una sola variable
d) Encuentra un máximo a la función anterior e indica las medidas de la caja para que su volumen sea el mayor posible.
-
Se van a imprimir carteles con forma triángulo rectángulo cuyos catetos suman 6 metros. Entre todos los posibles triángulos rectángulos que se pueden formar, optamos por aquel que tenga el área máxima. ¿Qué medidas tendría?
-
Un industrial desea construir una caja abierta, es decir sin tapa, de base cuadrada y superficie total 108 centímetros cuadrados. ¿Qué dimensiones tendrá la caja de volumen máximo?