Ecuaciones Matriciales

Dadas las matrices:

A =
\left(
\begin{array}{cc}
     1 & 1 
  \\ 3 & 4
\end{array}
\right)
 \qquad

B = 
\left(
\begin{array}{cc}
     2 & 1
  \\ 1 & 1
\end{array}
\right)
 \qquad

C = 
\left(
\begin{array}{cc}
     1 & 2
  \\ 3 & 3
\end{array}
\right)

Resuelve la siguiente ecuación matricial:

 AX + BX = C

SOLUCIÓN

AX + BX = C
(A + B)X = C
(A+B)^{-1}(A + B)X = (A+B)^{-1} C
I \cdot X = (A+B)^{-1} C
 X = (A+B)^{-1} C

A+B =
\left(
\begin{array}{cc}
     3 & 2 
  \\ 4 & 5
\end{array}
\right)

(A+B)^{-1} =
\left(
\begin{array}{cc}
     5/7 & -2/7 
  \\ -4/7 & 3/7
\end{array}
\right)

X = (A+B)^{-1} \cdot C=
\left(
\begin{array}{cc}
     5/7 & -2/7 
  \\ -4/7 & 3/7
\end{array}
\right)
 \cdot \left(
\begin{array}{cc}
     1 & 2
  \\ 3 & 3
\end{array}
\right) = \fbox{\left(
\begin{array}{cc}
     -1/7 & 4/7 
  \\ 5/7 & 1/7
\end{array}
\right)}