Recordemos antes de nada que para que una matriz tenga inversa, debe ser una matriz cuadrada con determinante no nulo.
Hay muchos métodos para calcular la inversa. Explicamos aquí el método de Gauss-Jordan.
Sea
una matriz invertible. El método de Gauss-Jordan consiste en:
1) Ampliar la matriz A con la matriz identidad: 
2) Hacer transformaciones elementales con las filas hasta conseguir que quede de la forma 
3) La matriz B obtenida a la derecha es la inversa de A

Esquema para una matriz 2x2

Orden a seguir

Esquema para una matriz 3x3

Orden a seguir


Ejemplo resuelto con matriz 2x2
Ejemplo resuelto con matriz 3x3