Ejercicios Resueltos de Álgebra

(241)  ejercicios de Matemáticas PAU Andalucía
(66)  ejercicios de Matemáticas II - Álgebra (Matrices, Determinantes y Sistemas)
  • (#3526) - Selectividad Andalucía 2011-4-A3             solución en PIZARRA

    Considera el sistema de ecuaciones
    \left.
\begin{array}{rcc}
2x-2y+4z & = & 4 \\
2x + z & = & a \\
 -3x -3y+ 3z & = & -3 
\end{array}
\right\}

    - a) Discútelo según los valores del parámetro a
    - b) Resuélvelo cuando sea posible

  • (#3296) - Selectividad Andalucía 2011-2-B3        Ver Solución       solución en PIZARRA

    Sean las matrices
     A =
\left(
\begin{array}{cc}
     \alpha & 1
  \\ - \alpha & 3
\end{array}
\right)

     B =
\left(
\begin{array}{ccc}
     1 & 3 & 1
  \\ -1 & 4 & 2
\end{array}
\right)

    - a) Calcula los valores de \alpha para los que la matriz inversa de A es \frac{1}{12}A
    - b) Para \alpha=-3, determina la matriz X que verifica la ecuación A^tX=B , siendo A^t la matriz traspuesta de A.

  • (#3295) - Selectividad Andalucía 2011-2-A3        Ver Solución       solución en PIZARRA

    Dadas las matrices

     A =
\left(
\begin{array}{ccc}
     \alpha & 1 & -1
  \\ 1 & \alpha & -1
  \\ -1 & -1 & \alpha
\end{array}
\right)

     B =
\left(
\begin{array}{ccc}
     0
  \\ 1
  \\ 1
\end{array}
\right)

    - a) Calcula el rango de A dependiendo de los valores de \alpha
    - b) Para \alpha=2, resuelve la ecuación matricial A^tX=B

  • (#3433) - Selectividad Andalucía 2011-1-A3        Ver Solución      

    Considera las matrices:

    A=\left( \begin{array}{ccc}1 & 0 & 0\cr 0 & \lambda & 1\cr 0 & -1 & \lambda\end{array}\right)
    \qquad y \qquad
    B=\left( \begin{array}{ccc}0 & 0 & 1\cr 1 & 0 & 0\cr 0 & 1 & 0\end{array}\right)

    - a) ¿Hay algún valor de \lambda para el que A no tiene inversa?
    - b) Para \lambda=1, resuelve la ecuación matricial A^{-1}XA = B

  • (#3287) - Selectividad Andalucía 2010-5-B3             solución en PIZARRA

    Sean las matrices

    A = 
\left(
\begin{array}{cc}
1 & 0\\
 -1 & 1
\end{array}
\right)
    ,
    B = 
\left(
\begin{array}{ccc}
1 & 0 & 0\\
 0 & -1 & -1\\
 0 & 1 & 2
\end{array}
\right)
    y
    C = 
\left(
\begin{array}{ccc}
3 & 1 & 2\\
 0 & 1 & -2
\end{array}
\right)

    Calcula la matriz X que cumpla la ecuación AXB = C

Selectividad Andalucía

Matemáticas II

Mat. C. Sociales II