(245)  ejercicios de Matemáticas PAU Andalucía
(19)  ejercicios de Mat. C. Sociales II - Programación Lineal (Optimización, Sistemas de Inecuaciones)
  • (#4377) - Selectividad Andalucía Junio 2014 B1        Ver Solución      

    a) Dadas las inecuaciones
    y \leq x + 5, \qquad 2x + y \geq -4, \qquad 4x \leq 10 -y, \qquad y \geq 0
    represente el recinto que limitan y calcule sus vértices.
    b) (0.7 puntos) Obtenga el máximo y el mínimo de la función f(x,y) =x+ \frac{1}{2}y en el recinto anterior, así como los puntos en los que se alcanzan.

  • (#4617) - Selectividad Andalucía 2021-1 A1        Ver Solución      

    Un laboratorio farmacéutico tiene una línea de producción con dos medicamentos A y B, con marca comercial y genérico respectivamente, de los cuales, entre los dos como máximo puede fabricar 10 unidades a la hora. Desde el punto de vista del rendimiento, se han de producir al menos 4 unidades por hora entre los dos y por motivos de política sanitaria, la producción de A ha de ser como mucho 2 unidades más que la de B.
    Cada unidad de tipo A que vende le produce un beneficio de 60 euros, mientras que cada unidad de tipo B le produce un beneficio de 25 euros. Si se vende todo lo que se produce, determine las unidades de cada medicamento que deberá fabricar por hora para maximizar su beneficio y obtenga el valor de dicho beneficio.

  • (#4616) - Selectividad Andalucía 2021 Julio A2        Ver Solución      

    Se consideran las siguientes inecuaciones:

    5x - 4y \leq -19  \qquad 3x - 4y \leq -13   \qquad  x \geq -7   \qquad -x-y \geq 2

    a) Represente la región factible defnida por las inecuaciones anteriores y determine sus vértices.

    b) ¿Cuáles son los puntos en los que se alcanzan el mínimo y el máximo de la función
     G(x, y) = -\frac{1}{5}x + \frac{5}{2}y en la citada región factible? ¿Cuál es su valor?.

    c) Responda de forma razonada si la función  G(x, y) = -\frac{1}{5}x + \frac{5}{2}y puede alcanzar el valor \frac{47}{3} en la región factible hallada.

  • (#4375) - Selectividad Andalucía 2018 Junio A1        Ver Solución      

    a) Plantee, sin resolver, las restricciones de este problema e indique la función a optimizar:
    "Un ganadero alimenta a sus ovejas con maíz y pienso. Cada kilogramo de maíz aporta 600 g de hidratos de carbono y 200 g de proteínas, mientras que cada kilogramo de pienso aporta 300 g de hidratos de carbono y 600 g de proteínas. Cada oveja necesita diariamente como mínimo 1800 g de hidratos de carbono y 2400 g de proteínas. Si 1 kg de maíz cuesta 0.50 euros y 1 kg de pienso cuesta 0.25 euros, calcule cuántos kilogramos de cada producto tendría que comprar el ganadero para alimentar cada día a una oveja con un gasto mínimo".

    b) Represente el recinto limitado por las siguientes restricciones, calculando sus vértices
    x \geq 0 \qquad x \leq 2y+2 \qquad x+y \leq 5

    Calcule el máximo de F(x,y)=4x+3y en ese recinto, así como el punto donde se alcanza
    .

  • (#4376) - Selectividad Andalucía 2017 Septiembre B1        Ver Solución      

    a) Represente el recinto definido por las siguientes inecuaciones:
    x+y \leq 3  \qquad  2x+y \geq 4 \qquad y \geq -1
    b) Razone si el punto (2, 1) pertenece al recinto anterior.
    c) Obtenga los vértices del recinto y los valores mínimo y máximo de la función F(x,y)=5x+4y en ese recinto, indicando en qué puntos se alcanzan.
    d) Razone si la función F puede alcanzar el valor 9 en el recinto anterior.

Selectividad Andalucía

Matemáticas II

Mat. C. Sociales II