(245)  ejercicios de Matemáticas PAU Andalucía
(10)  ejercicios de Mat. C. Sociales II - Álgebra (Matrices, Determinantes y Sistemas)
  • (#4615) - Selectividad Andalucía 2021-Julio-A1        Ver Solución      

    Se considera la matriz A=\left( \begin{array}{ccc}  2 & 1 & 0  \\ 1 & 0 & 2 \\ 0 & 2 & a \end{array} \right)

    a) Determine para qué valores del parámetro a , la matriz A tiene inversa.
    b) Para a = 1, calcule la inversa de A.
    c) Para a = 1, resuelva la ecuación matricial A \cdot X = B^t , siendo B=\left( \begin{array}{ccc}  0 & 1 & -1 \end{array} \right)

  • (#4614) - Selectividad Andalucía 2021-1-A2        Ver Solución      

    Se consideran las matrices
    A=\left( \begin{array}{ccc}     a & 4  \\ 6 & 8 \end{array} \right) \: \: , \: \:B=\left( \begin{array}{ccc}     2 & 2  \\ 3 & 3 \end{array} \right) \: \quad y \:   C=\left( \begin{array}{ccc}     1 & 2  \end{array} \right)

    a) Calcule el valor del parámetro a para que la matriz A no tenga inversa.
    b) Para a = 3, resuelva la ecuación matricial X \cdot A - X \cdot B = C .
    c) Para a = 3, compruebe que A^2 = 11 \cdot A y exprese A^8
    en función de la matriz A.

  • (#4005) - Selectividad Andalucía 2014-2-B1        Ver Solución      

     a) Determine los valores de x e y que hacen cierta la igualdad
    \left(
\begin{array}{cc}
     2 & -1
  \\ 3 & -1
\end{array}
\right)
\cdot
\left(
\begin{array}{c}
     x
  \\ -y
\end{array}
\right)
=\left(
\begin{array}{cc}
     1 & x
  \\ y & -1
\end{array}
\right)
\cdot
\left(
\begin{array}{c}
     3
  \\ 0
\end{array}
\right)
     b) Resuelva la ecuación matricial
    X \cdot
\left(
\begin{array}{cc}
     1 & 3
  \\ 2 & 5
\end{array}
\right) - 2 \cdot
\left(
\begin{array}{cc}
     0 & -1
  \\ -1 & 0
\end{array}
\right) =
\left(
\begin{array}{cc}
     1 & 2
  \\ 3 & -1
\end{array}
\right)

  • (#3905) - Selectividad Andalucía 2013-2-B1        Ver Solución      

    Sean las matrices
    A=\left( \begin{array}{cc}  \frac{1}{5} & 0  \\ -\frac{2}{5} & \frac{3}{5} \end{array} \right)
    ,
    B=\left( \begin{array}{cc}  \frac{3}{5} & -1 \\ \frac{4}{5} & \frac{4}{5} \end{array} \right)
    ,
    C= \left( \begin{array}{ccc}   1 & 0 & -1  \\ 2 & 1 & 3 \end{array} \right)

     a) Resuelva la ecuación matricial (2A+B) \cdot X = 3A - B
     b) Determine en cada caso la dimensión de la matriz D para que se puedan realizar las siguientes operaciones: C \cdot D+A , C^t \cdot D \cdot C , D \cdot C^t , C \cdot D \cdot C^t

  • (#3300) - Selectividad Andalucía 2011-5-B1             solución en PIZARRA

    Sean las matrices
    A=
\left(
\begin{array}{ccc}
     0 & 1 & 0
  \\ 1 & 0 & 1
\end{array}
\right) \qquad \quad B=\left(
\begin{array}{cc}
     3 & -1
  \\ 1 & 2
\end{array}
\right)

    a) Efectúe, si es posible, los siguientes productos:

     a1) A \cdot A^t
     a2) A^t \cdot A
     a3) A \cdot B

    b) Resuelva la siguiente ecuación matricial A \cdot A^t \cdot X = B

Selectividad Andalucía

Matemáticas II

Mat. C. Sociales II