Ejercicios de Matrices, Determinantes y Sistemas - 2º Bach. Ciencias

(110) ejercicios de Matrices, Determinantes y Sistemas

  • (#3199)      Ver Solución Seleccionar

    En el sector de las aceitunas sin hueso, tres empresas A, B y C, se encuentran en competencia. Calcula el precio por unidad dado por cada empresa sabiendo que verifican las siguientes relaciones:
     El precio de la empresa A es 0,6 euros menos que la media de los precios establecidos por B y C.
     El precio dado por B es la media de los precios de A y C.
     El precio de la empresa C es igual a 2 euros mas 2/5 del precio dado por A mas 1/3 del precio dado por B.

  • (#3200)   solución en PIZARRA    Ver Solución Seleccionar

    Considera las matrices

    
A =
\left(
\begin{array}{ccc}
     0 & 0 & 1
  \\ 0 & 1 & 0
  \\ 1 & 0 & 0
\end{array}
\right)
    ,
    
B =
\left(
\begin{array}{ccc}
     0 & 0 & 1
  \\ x & 1 & 0
  \\ y & 0 & 0
\end{array}
\right)

     a) Calcula la matriz inversa de A
     b) Calcula A^{127} y A^{128}
     c) Determina x e y tal que AB = BA

  • (#3219)     Seleccionar

    Considera las matrices

    
A =
\left(
\begin{array}{ccc}
  \alpha & 1 & 1
  \\ -1 & 3 & 2
  \\ 2 & 1-\alpha & 3
\end{array}
\right)
    ,
    
B =
\left(
\begin{array}{ccc}
  \alpha-1 & 0 & -1
  \\ 1 & -1 & 2
  \\ 0 & -\alpha & 0
\end{array}
\right)
    ,
    
b =
\left(
\begin{array}{c}
   -1
  \\ -5
  \\ 3
\end{array}
\right)
    ,
    
c =
\left(
\begin{array}{c}
   -2
  \\ 5
  \\ 0
\end{array}
\right)
    ,
    
X =
\left(
\begin{array}{c}
   -x
  \\ y
  \\ z
\end{array}
\right)

    Determina \alpha, si es posible, para que los sistemas de ecuaciones (dados en forma matricial)

    AX=b \qquad ; \qquad BX=c

    tengan infinitas soluciones (cada uno de ellos).

  • (#3220)     Seleccionar

    Considera la matriz

    
A =
\left(
\begin{array}{ccc}
  1 & 0 & \alpha
  \\ \alpha & 0 & -1
  \\ 2 & -1 & 1
\end{array}
\right)

     a) Halla los valores de \alpha para los que la matriz A tiene inversa.
     B) Calcula, si es posible, la inversa de la matriz A^2 para \alpha = 0

  • (#3221)      Ver Solución Seleccionar

    Considera la matriz

    
A =
\left(
\begin{array}{ccc}
  2 & t & 0
  \\ t & 2 & 1
  \\ 3 & 0 & 1
\end{array}
\right)

    Calcula los valores de t para los que el determinante de A es positivo y halla el mayor valor que alcanza dicho determinante.