-
En los individuos de una población, la concentración de una proteína en sangre se distribuye según una ley Normal de media desconocida y desviación típica 0.42 g/dl. Se toma una muestra aleatoria de 49 individuos y se obtiene una media muestral de 6.85 g/dl.
– a) Obtenga un intervalo de confianza, al
, para estimar la concentración media de la proteína en sangre de los individuos de esa población.
– b) ¿Es suficiente el tamaño de esa muestra para obtener un intervalo de confianza, al
, con un error menor que 0.125 g/dl?
-
En el experimento aleatorio consistente en lanzar un dado equilibrado con las caras numeradas del 1 al 6 y observar el resultado se consideran los siguientes sucesos: A: “obtener un número mayor que 4”, B: “obtener un número par”.
a) Escriba los elementos de cada uno de los siguientes sucesos:
;
;
;
; 
b) Calcule las probabilidades
y 
-
a) Dibuje el recinto del plano definido por las inecuaciones:
;
;
;
; 
b) Calcule los vértices del mismo
c) Obtenga en dicho recinto los valores máximo y mínimo de la función
y los puntos donde se alcanzan.
-
En una empresa han hecho un estudio sobre la rentabilidad de su inversión en publicidad, y han llegado a la conclusión de que el beneficio obtenido, en miles de euros, viene dado por la expresión
, siendo x la inversión en publicidad, en miles de euros, con x en el intervalo
.
– a) ¿Para qué valores de la inversión la empresa tiene pérdidas?
– b) ¿Cuánto tiene que invertir la empresa en publicidad para obtener el mayor beneficio posible?
– c) ¿Cuál es el beneficio si no se invierte nada en publicidad? ¿Hay algún otro valor de la inversión para el cual se obtiene el mismo beneficio?
-
Un estudio sociológico afirma que el 70% de las familias cena viendo la televisión. Se desea contrastar la veracidad de esta afirmación y, para ello, se toma una muestra de 500 familias, en la que se observa que 340 ven la televisión mientras cenan. Decida, mediante un contraste de hipótesis, si la afirmación es cierta con un nivel de significación de 0.01.