EJERCICIOS RESUELTOS - Estadística

Estadística - Matemáticas Aplicadas a las C. S. II

Las medidas de los diámetros de una muestra aleatoria de 200 bolas de rodamientos, producidas por una máquina en una semana, tienen una media de 0,824 cm. y una desviación típica de 0,042 cm. Halla los límites de confianza al 95\% para el diámetro medio de todas las bolas.


En una muestra aleatoria de 225 individuos se ha obtenido una media de edad de 16,5 años. Se sabe que la desviación típica de la población de la que procede la muestra es 0,7 años. Obtenga un intervalo de confianza al 98\% para la media de la población.


El tiempo de reacción de un automovilista ante un obstáculo inesperado sigue una distribución normal con desviación típica de 0,1 segundo. Deduzca el tamaño con el que ha de tomarse una muestra para tener una confianza del 90\% de que el error de estimación de tiempo medio de reacción no supere los 0,02 segundos.


A 400 personas elegidas al azar se les ha preguntado su gasto anual en libros, obteniéndose una cantidad media de 22000 pesetas. Con independencia de esta muestra, se sabe que la desviación típica de la inversión en libros de la población es de 4000 pesetas.

 a) Halle un intervalo de confianza al 90\% y centrado, para la media poblacional de esta inversión.
 b) ¿Qué tamaño muestral sería necesario para que el correspondiente intervalo de confianza del aparatado anterior fuese (21904, 22096)


La variable X se distribuye según una ley normal de media 10 y desviación típica 3. Determine el tamaño de una muestra extraída de la población, de modo que la probabilidad de que la media muestral esté por encima de 12 sea de 0,025


Queremos obtener la media de una variable que se distribuye normalmente con una desviación típica de 3,2. Para ello, se toma una muestra de 64 individuos obteniéndose una media de 32,5. ¿Con qué nivel de confianza se puede afirmar que la media de la población está entre 31,5 y 33,5?
Si la desviación típica de la población fuera 3, ¿Cuál es el tamaño mínimo que debería tener la muestra con la cual estimamos la media poblacional, si queremos que el nivel de confianza sea de 99\% y el error admisible no supere el valor de 0,75?


La altura de los jóvenes andaluces se distribuye según ley normal de media desconocida y varianza 25 cm^2. Se ha tomado una muestra aleatoria, y con una confianza de 95\% , se ha construido un intervalo para la media poblacional cuya amplitud es 2,45 cm.

 a) ¿Cuál ha sido el tamaño de la muestra seleccionada?
 b) Determina el límite superior y el inferior del intervalo de confianza si la muestra tomada dio una altura media de 170 cm


Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15200 km con una desviación típica de 2250 km.

 a) Determine un intervalo de confianza, al 99\% , para la cantidad promedio de kilómetros recorridos.
 b) ¿Cuál debe ser el tamaño mínimo de la muestra para que el error cometido no sea superior a 500 km, con igual confianza?


Una encuesta realizada sobre 40 aviones comerciales revela que la antigüedad media de estos es de 13,41 años, con una desviación típica de 8,28 años. Se pide:

 a) ¿Entre qué valores, con un 90\% de confianza, se encuentra la auténtica media de la flota comercial?
 b) Si se quiere obtener un nivel de confianza del 95\% cometiendo el mismo error de estimación que en el apartado anterior y suponiendo también que la desviación típica muestral es de 8,28 años, ¿cuántos elementos debería componer la muestra?


El coeficiente intelectual de los alumnos de un centro se distribuye N(110,15). Escogemos 25 alumnos al azar. ¿Cuál es la probabilidad de que el C. I. medio de los 25 alumnos sea superior a 115?


1º BACH. CIENCIAS 1º BACH. SOC. 1º ESO 2º BACH. CIENCIAS 2º BACH. SOC. 2º ESO 3º ESO 4º ESO