EJERCICIOS RESUELTOS - Trigonometría

Trigonometría - 1º Bach. Ciencias

Observamos el punto más alto de un castillo bajo un ángulo de 30 grados sobre la horizontal. Nos acercamos 100 metros y ahora el ángulo es de 45 grados. Halla la altura del castillo.


Demuestra la siguiente igualdad trigonométrica:
cotg^2 \: \alpha - cos^2 \: \alpha = cotg^2 \: \alpha \cdot cos^2 \: \alpha


Encuentra todos los ángulos "x" comprendidos entre -2\pi y \pi que verifiquen:

 a) sen(x) = \frac{\sqrt{3}}{2}
 b) cos(x) = \frac{\sqrt{2}}{2}
 c) sen(x) = -1


a) Expresa en grados y radianes todos los ángulos entre 0 y 180 que sean múltiplo de 30. Debes expresarlos en la siguiente circunferencia.
b) Expresa en grados y radianes todos los ángulos entre 180 y 360 que sean múltiplo de 45. Debes expresarlos en la siguiente circunferencia.


Sabiendo que sen \: x = \frac{3}{5} y que \frac{\pi}{2} < x < \pi , averigua sen \: 2x


Sabiendo que tg \: \alpha = \frac{2}{3} y que 0^o < \alpha < 90^o , halla sen \: \alpha y cos \: \alpha


Sabiendo que sen \: x = \frac{3}{5} y que \frac{\pi}{2} < x < \pi , averigua tg \: \left( x + \frac{\pi}{4} \right)


Sabiendo que tg \: \alpha = \frac{2}{3} y que 0 \leq \alpha \leq 90^o , halla cos \:(180^o + \alpha)


Hallar el valor de tg \: \theta en función de \alpha , m y n


Un ferrocarril une en línea recta dos ciudades A y B. Una tercera ciudad dista de A 22 km. Si el ángulo CAB es de 30º y el
ángulo CBA es de 48º, calcular la distancia de A a B.


1º BACH. CIENCIAS 1º BACH. SOC. 1º ESO 2º BACH. CIENCIAS 2º BACH. SOC. 2º ESO 3º ESO 4º ESO