EJERCICIOS RESUELTOS - Matrices, Determinantes y Sistemas

Matrices, Determinantes y Sistemas - 2º Bach. Ciencias

Dado el sistema de ecuaciones lineales
\left.
\begin{array}{rcc}
 - \lambda x + y+ z & = & 1 \\
x + \lambda y +z & = & 2 \\
\lambda x + y+ z & = & 1
\end{array}
\right\}

- a) Clasifica el sistema según los valores del parámetro \lambda
- b) Resuelve el sistema para \lambda = 0


Dada la matriz
 A =
\left(
\begin{array}{cc}
     \lambda +1 & 0
  \\ 1 & -1
\end{array}
\right)

- a) Determina los valores de \lambda para los que la matriz A^2+3A no tiene inversa.
- b) Para \lambda =0, halla la matriz X que verifica la ecuación AX + A = 2I, siendo I la matriz identidad de orden 2.


Considera las matrices
A = \left(
\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 2 \\
1 & 2 & 1 
\end{array}
\right) \aquad
B = \left(
\begin{array}{cc}
0 & 1 \\
1 & 0  
\end{array}
\right) \aquad
C = \left(
\begin{array}{ccc}
 -1 & 2 & 0 \\
1 & 1 & 2  
\end{array}
\right)
Determina, si existe, la matriz X que verifica AXB = C^t, siendo C^t la matriz traspuesta de C


Considera el sistema de ecuaciones
\left.
\begin{array}{ccccc}
x &+ y&+ kz & = & 1 \\
2x& + ky & &= & 1 \\
 &y&+ 2z & = & k
\end{array}
\right\}

- a) Clasifica el sistema según los valores del parámetro k
- b) Resuélvelo para k=1
- c) Resuélvelo para k=-1


Considera las matrices


A =
\left(
\begin{array}{ccc}
     1 & 0 & 1
  \\ 1 & 1 & 0
  \\ 0 & 0 & 2
\end{array}
\right)
y
B =
\left(
\begin{array}{ccc}
     -1 & 1 & 1
  \\ 1 & -1 & 1
  \\ 0 & 0 & -1
\end{array}
\right)

- (a) Halla, si es posible, A^{-1} y B^{-1}
- (b) Halla el determinante de A B^{2013} A^t siendo A^t la matriz traspuesta de A
- (c) Calcula la matriz X que satisface AX - B = AB


Calcula todas las matrices X = \left(
\begin{array}{cc}
     a & b
  \\ c & d
\end{array}
\right) tales que a+d=1, tienen determinante 1 y cumplen AX=XA, siendo A = \left(
\begin{array}{cc}
     0 & -1
  \\ 1 & 0
\end{array}
\right)


Dadas las matrices  A = \left(
\begin{array}{ccc}
     2-m & 1 & 2m-1
  \\ 1 & m & 1
  \\  m & 1 & 1
\end{array}
\right) , X = \left(
\begin{array}{c}
     x
  \\  y
  \\ z
\end{array}
\right) ,  B = \left(
\begin{array}{c}
     2m^2-1
  \\  m
  \\ 1
\end{array}
\right) , considera el sistema de ecuaciones lineales dado por X^tA=B^t, donde X^t , B^t denotan las traspuestas. Discútelo según los distintos valores de m


Se consideran las matrices
A = \left( \begin{array}{ccc} 1 & 2 & \lambda \\1 & -1 &-1 \end{array} \right)
,
B = \left( \begin{array}{cc} 1 & 3 \\\lambda & 0 \\0 & 2 \end{array} \right)
donde \lambda es un número real.

- a) Encontrar los valores de \lambda para los que la matriz AB tiene inversa
- b) Dados a y b números reales cualesquiera, ¿puede ser el sistema A \left( \begin{array}{c} x \\y \\z \end{array} \right) =  \left( \begin{array}{c} a \\b \end{array} \right) compatible determinado con A la matriz del enunciado?.


Teniendo en cuenta que
\left| \begin{array}{ccc} 
a & b & c \\
p & q & r \\
x & y & z
\end{array} \right| = 7 ,

calcular el valor del siguiente determinante sin desarrollarlo

\left| \begin{array}{ccc} 
3a & 3b & 3c \\
a+p & b+q & c+r \\
 -x+a & -y+b & -z+c
\end{array} \right|


La liga de fútbol de un cierto país la juegan 21 equipos a doble vuelta. Este año, los partidos
ganados valían 3 puntos, los empatados 1 punto y los perdidos 0 puntos. En estas condiciones, el equipo campeón de liga obtuvo 70 puntos. Hasta el año pasado los partidos ganados valían 2 puntos y el resto igual. Con el sistema antiguo, el actual campeón hubiera obtenido 50 puntos. ¿Cuantos partidos gano, empató y perdió el equipo campeón?


1º BACH. CIENCIAS 1º BACH. SOC. 1º ESO 2º BACH. CIENCIAS 2º BACH. SOC. 2º ESO 3º ESO 4º ESO