EJERCICIOS RESUELTOS - Programación Lineal

Matemáticas Aplicadas a las Ciencias Sociales II (2º Bachillerato)

Desde dos almacenes A y B, se tiene que distribuir fruta a tres mercados de la ciudad. El almacén A dispone de 10 toneladas de fruta diarias y el B de 15 toneladas, que se reparten en su totalidad. Los dos primeros mercados necesitan, diariamente, 8 toneladas de fruta, mientras que el tercero necesita 9 toneladas diarias.
El coste del transporte desde cada almacén a cada mercado viene dado por el siguiente cuadro:


Planificar el transporte para que el coste sea mínimo.


Un taller fabrica y vende dos tipos de alfombras, de seda y de lana. Para la elaboración de una unidad se necesita un trabajo manual de 2 horas para el primer tipo y de 3 horas para el segundo y de un trabajo de máquina de 2 horas para el primer tipo y de 1 hora para el segundo. Por cuestiones laborales y de planificación, se dispone de hasta 600 horas al mes para el trabajo manual y de hasta 480 horas al mes para el destinado a la máquina. Si el beneficio por unidad para cada tipo de alfombra es de 150 € y 100 €, respectivamente, ¿cuántas alfombras de cada tipo debe elaborar para obtener el máximo beneficio? ¿A cuánto asciende el mismo?


En una carpintería, que consta de tres secciones, se construyen mesas y conjuntos de 4 sillas. En la primera sección se cortan las piezas que conforman los muebles, invirtiéndose una hora en el conjunto de las 4 sillas y tres horas en la mesa. En la segunda sección se realiza el ensamblaje de las piezas, empleándose 1 hora y 20 minutos, tanto para las sillas como para la mesa. Por último, en la tercera sección se pulen los muebles, tardándose 2 horas y 30 minutos en finalizar las 4 sillas y sólo 8/7 de hora en la mesa. Debido a las características de la empresa, sólo se puede trabajar un máximo de 61 horas semanales en las secciones 2ª y 3ª y 60 horas en la 1ª. Sabiendo que las ganancias por el conjunto de las 4 sillas y la mesa son respectivamente, 800 € y 600 €, organiza tú mismo cómo debiera ser la producción para que así los beneficios fuesen máximos.


Se quiere organizar un puente aéreo entre dos ciudades, con plazas suficientes de pasaje y carga, para transportar 1600 personas y 96 toneladas de equipaje. Los aviones disponibles son de dos tipos: 11 del tipo A y 8 del tipo B. La contratación de un avión del tipo A cuesta 4 millones de pts y puede transportar 200 personas y 6 toneladas de equipaje; la contratación de uno del tipo B cuesta 1 millón de pts y puede transportar 100 personas y 15 toneladas de equipaje.

¿Cuántos aviones de cada tipo deben utilizarse para que el coste sea mínimo?.


Sea el recinto definido por las siguientes inecuaciones:

\left.
\begin{array}{r}
5x + 2y -10 \geq 0 \\
x-y-2 \leq 0 \\
 3x+4y-20 \leq 0 \\
x \geq 0 \\
y \geq 0
\end{array}
\right\}

 a) Dibuje dicho recinto y determine sus vértices.
 b) Determine en qué punto de ese recinto alcanza la función F(x,y)=4x+3y el máximo valor.


Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo dispone de 800 cartuchos de tinta negra y 1100 de color, y si no puede imprimir más de 400 revistas, ¿cuánto dinero podrá ingresar como máximo, si vende cada periódico a 0.9 euros y cada revista a 1.2 euros?


Un Ayuntamiento concede licencia para la construcción de una urbanización de a lo sumo 120 viviendas, de dos tipos A y B.
Para ello la empresa constructora dispone de un capital máximo de 15 millones de euros, siendo el coste de construcción de la vivienda de tipo A de 100000 euros y la de tipo B 300000 euros.
Si el beneficio obtenido por la venta de una vivienda de tipo A asciende a 20000 euros y por una de tipo B a 40000 euros, ¿cuántas viviendas de cada tipo deben construirse para obtener un beneficio máximo?


Consideramos el recinto del plano limitado por las siguientes inecuaciones:

y-x \le 4  ; \quad y+2x \ge 7  ; \quad -2x-y+13 \ge 0  ; \quad x \ge 0   ; \quad y \ge 0

 (a) Represente el recinto y calcule sus vértices.
 (b) Halle en qué puntos de ese recinto alcanza los valores máximo y mínimo la función F(x,y)=4x+2y-1


(a) Represente gráficamente la región determinada por las siguientes restricciones:
2x+y \le 6 ; \quad 4x+y \le 10 ; \quad -x+y \le 3 ; \quad x \ge 0 ; \quad y \ge 0

(b) Calcule el máximo de la función f(x,y) = 4x+2y-3 en el recinto anterior e indique dónde se alcanza.


En un examen de Matemáticas se propone el siguiente problema:
"Indique dónde se alcanza el mínimo de la función F(x,y)=6x+3y-2 en la región determinada por las restricciones 2x+y \ge 6 ; 2x+5y \le 30 ; 2x-y \le 6."

 (a) Resuelva el problema
 (b) Ana responde que se alcanza en (1,4) y Benito que lo hace en (3,0). ¿Es cierto que el mínimo se alcanza en (1,4)?. ¿Es cierto que se alcanza en (3,0)?.


1º BACH. CIENCIAS 1º BACH. SOC. 1º ESO 2º BACH. CIENCIAS 2º BACH. SOC. 2º ESO 3º ESO 4º ESO